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Abstract: Quantitative structure activity relationships (QSARvere developed to predict ecotoxicity of divaleretal
ions by correlating the biological activity, A=IddgEG;), values with two ion descriptors, chosen to repré the binding
tendencies of metals to ligands, the first hydrslg®nstant (I§4) and the electronegativity coefficient)( Relative metal
ions’ ecotoxicity (C&", B&*, Cdf*, Cd*, CU/*, SF*, HE™", Mg**, Mn?*, Ni?*, PE* and Z#") was predicted with regression
models. The models are compared with other baseteatronic effects towards emphasizing differetés they assign in

ecotoxicity molecular mechanisms.
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1. Introduction

Metal toxicity is largely determined by the functad
ionic selectivity of proteins (complexation, coordfion,
chelation, ion exchange, adsorption). The QSARshaout
offered a new way to explore the interaction betwte

2. Experimental

In predictive toxicology, we exploit the toxicolagil
knowledge about a set of chemical compounds inraxale
predict the degree of activity of other compount]s More
specifically, we mathematically model the relatioips

absorbed metal ions and the functional groups an thbetween specific properties of training compounds. (

biomass [1]. Metals can cause toxicity at the tadlievel
[2] in higher plants by affecting membrane permitgbby
inhibiting, inducing or increasing the activity ehzymes

compounds for which the degree of activity is knpwand
their toxicological activity and apply the model tpery
compounds (i.e. compounds for which the degree of

and by activating defense mechanisms against isedea activity is not known) to obtain predicted actiggi

metal phytotoxicity.

Approximately two-thirds of the elements in theStructure Activity Relationship ((Q)SAR).

periodic table can be categorized as metals. Beditker,
malleability, and conductivity, one of the fundartan
characteristics of metals is their low ionizatiootgntial.
As a result, the ionic forms of these elements gmédate
in the biosphere.

Considering the diverse properties of these iong i
not surprising that through the process of evolytimetal
ions have been co-opted into numerous roles inogiol
Metal ions are required for so many biochemicattieas
that it is likely that they also had an importaalerin the
RNA world.

The direct prediction of properties is in generat n
feasible either owing to lack of computing resosre®
lack of knowledge about the relationship betweencstire
and property. QSAR predictions for inorganic totyici
(especially for the toxicity of metal ions), howeyare less
developed. In the year 2000, a paper entitled, “RSAor
metals - fact or fiction?”, by Walker and Hickey] faised a
number of issues.

The process of model-building is called (Quanti&yi
SARs are
models based on structural features, and QSARsarly
quantitative (frequently physico-chemical) propesti The
most general mathematical form of a (Q)SAR is:

Activity = f(physicochemical and/or structural faegs)

Multilinear models have been in use since a longgti
As linear equations, they are easy to use andivelat
straightforward to interpret. For n instances thase
defined as the coefficients that minimize the eroor a
system of n linear equations [5 - 8]:

y, =bx, +b,x, +...+b, %, +d i0{1,...,n}

where b and d are the coefficients to learn.

Relationships were developed to correlate a strailctu
parameter (i.e.,acidity) with activity. In some ess the

mono-parametric relationships correlating structwigh
activity were adopted with the form:
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based databases: the model database (QMDB) -
inventorying the robust summaries of QSARSs that lsan
where C is the molar concentration of compound th&ppealed by envisaged endpoint or chemical, thaigiien
produces a standard response (e.gs, IBCs). database (QPDB) - when data from QMDB are used for
lon characteristics of inorganic species can bel tise further prediction to be stored, or together towgrthe
predict the relative toxicity or sublethal effeai$ metal chemical category database (CCD) documentatiod, [50
ions. Many of these characteristics reflect thedisig - 12].
tendencies of metals to ligands. For example, lon characteristics used for modeling (Table 1)ewer
electronegativity(x) is correlated with the energy of anobtained from a variety of sources. The first hygsis
empty valence orbital and reflects the ability ofatal to  constants (lodoy) were obtained from Baes and Mesmer
accept electrons, combining electronegativity whth ionic  [13] and Brown and Allison [14] and and average
radius yields an index that quantifies the impareamf electronegativity valuex were taken directly from Allred
covalent interactions relative to ionic interacgoj9]; the [15]. The median effect concentration values 4fQvere
acidity of metal ions pKadike |logKon|, where ko is the taken from John T. McCloskey [16].
first hydrolysis constant:

A= Iog(é) =a+blog pK,

TABLE 1. Metal ion characteristics and biologicattiaity (A°*)

[M(H,0),]** +HOH — [M(H,0), ,0H]*?* +H,0* used in regression models, trial (Gaussian) andt tes
" " (Nongaussian) sets

(metal ions in aqueous solution behave as Lewidsaci

The relationship between pKand some biological | Type '\foerfgl (f,\(,fj’,‘i) A=llog(EGo)| | x | pKa=llogkoul
responses was often inverse parabolic, in which [@ac1 | m# | 1571 0.196176 155 10.6
maximum in the biological response occurred at some G2 | Cd* | 27.000 1.431364 1.69 117
optimum pK, value: G3 | Mg | 87.242 1.940726 131 11.42
G4 | NP | 566.000 2.752816 1.91 9.86
1 G5 | C& [ 874.000 2.941511 1.88 9.65
A=log(=) =a+bpK, +c(pK,)* G6 | B& | 95.455 1.979799 0.89 13.82
C G7 | zf" [ 35.000 1.544068 1.65 9.60
G8 | C¥ | 1.620 0.209515 1.9 8.96
The objective of this study was to establish the NG1 | SFf* | 235.527 2.372041 0.95 13.18
relationship between the metal ionic propertieshvitteir NG2 ng: 0.919 0.03668 2.0( 3.40
biological activity (median effect concentration &)Qising mgi gé 914'175%2 éggg:g’g ;'g) %28'(7)
QSAR model based on trial and test set of 12 ditale - - : -
metal ions, to improve the QSAR predictive moded &m
l:nc:Fr)rlglraetiotr?e understanding of the metal—(eco)toxicit 3. Results and Discussion
Nevertheless, many efforts have been focused on . .
applying QSAR methods to non-linearity featuresnfro In the Table 1 were obtained some data for theeseri

where the “expert systems” emerged as formalizedf 1ons metal, the median effect concentration eslu
computer-based environments, involving knowledggeda (ECso), from literature data [15], among the employed
rule-based or hybrid automata able to provide nafio aCtivity A=l0Gi10(ECs) and structural parameters as
predictions about properties of biological activigf €lectronegativity(x) and theacidity of metal ions pKiike
chemicals or of their fragments; it results in gas QSAR llogKon-
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Figure 1. The plot of the divalent metal ions’ fs€@xicities of Table I (classification as Gauss{@&) or non-Gaussian (NG) for being employed
for the trial and test QSAR sets, respectively).
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TABLE 2. Structure activity relationships for therlal set” (8 metal ions) of Table 1

No. Model R SEE
1. | A= 0.6935 + 0.0869 pK 0.1337 1.0946
2. | AS=-1.7267 + 0.5213 pf 0.0190 p? 0.1409 1.1879
3. | A®=7.8591-9.3759 + 3.2867° 0.3575 1.1300
4. | A% =.53382 +0.4781 pk 0.6939° 0.3540 11316
5. | A®™=-39.1408 + 13.8270 pk- 0.6350 pl -45.5479% + 14.9044 0.7201 1.0849

TABLE 3. Observed and predicted activity relatiapstfor the “Test set” ions metal of Table 1 usimgdels equations (1 to 5) from

Table 2.
Metal A predicted
lons A observed Model 1 Model 2 Model 3 Model 4 Model 5
SP* 2.372041 1.838842 1.843498 1.918242 1.589403 20972
Ho?* 0.03668 0.98896 -0.17392 2.2541 -0.9370¢ -30.9478
ca” 1.976359 1.79713 1.8293 1.7699 1.42757 3.39945
P 0.060698 1.37132 1.18348 3.856419 2.158094 4.86429
R 0.9206 0.8096 0.7089 0.3895 0.5402
SEE 0.5919 0.8896 1.0692 1.3962 1.2757

Since the usual statistic analysis demandgrtaband even lesser that its trial counterpart. Generatlyp-
test stages in validation the metal ions of Table 1 wereariable models provided better fits than one-\dea
classified accordingly based on the best fulfillinehthe models. These predictive models, if developed,ctpubve
normal distribution of input data (&g, as evidenced from very useful in areas where data on metal toxicity o
Figure 1, however, such that each category of inetl to  sublethal effects are lacking or incomplete. Onaeaalel
be represented in both “trial” and "test” setsmfitants. has been developed with representative metals for a

We obtained some data (structure activity relatigpey  particular organism under certain  environmental
for all possible correlation models considered friiv data conditions, the relative effect of additional metabuld be
in Table | together with the statistical (simplerretation predicted.
factor, standard error of estimation SEE). Theltesure in The present analysis enlighten on the fact thehodica
the table 2. dependence on activity respecting the acidity and

We see the Table 2 and we obtain useful informatioglectronegativity seems to be the most preferretbdted)
about the structure parameters in correlation wittmodel for higher prediction based on a collectib@8AR
electronegativity, acidity and biological activitfror the trial equation; this, perhaps, it features at thestbthe
metal ions serie the maximum of R (R = 0.72) dmel t increase and decrease (according with a parabiwdieey of
lowest SEE tells us that the model A = f(pKKZ, x, X)) is  the compound action into the organism as refletrtexithe
predicted as the most reliable one across the Aetacaf — activity response, respectively.

Table 2. The two-variable model usipl, andx? provided
the modest overall model amortge total ion A values as
judged by the lowest SEE value and R value.

The significant relationship indicates that theitay
of all series of ions metal can be best descrifethd
descriptors p§ pK.? x, andx? are included together in a
factorial regression model. The toxicity (&fCof the series

of lons metal c((j)ulld _be Id;.\_scnbetg best 33: a ngmmth effects of a toxicant as reflected into its orgamiactivity.
regression  model  Including € acidity an ?\ctually, for a group of divalent metal ions, the salled
electronegativity. Fair agreement between experimen-l-rial set of compounds found to display the first

data and model computation is achieved us.ing trat fi selection/screening in causing natural bioactiwas show
mod(_al as exp_re_ssed In Tablg 2 shows the relatiprodfthe to provide somehow reversed behavior in correlation
predicted tox_|C|ty vane_s with the observed ones_tfte output for the tested or Test set of ions metath wie best
best correlation coefficient found (R = 0,7201E. ithe response related with the parabolic dependencyhef t
model 5. activity by means of the chemical transport index o
However, one may note from th? Table 3 that thglectronegativity and first constant of hydrolysSuch
predicted correlation for this best trial — the rabd behavior is susceptible for further generalizateord will

corresponds With a relative_ly good pre(_jiction fhe €St b studied and will be necessary to determine thege of
compounds; instead the trial-model 5 in Table Zhwat applicabilty and reported in the subsequent

modest correlation about R = 72.01 % provides th o
) o ommunications.
predicted-tested correlation in Table 3 about R4-08 % unicat

4. Conclusion

Our results (models of metal ions’ (eco) toxicising
ion characteristics) agree with the target theaspecting
the increase and decrease of the electrical arurahic

48



Chem. Bull. " POLITEHNICA" Univ. (Timisoara)

Volume 57(71), 1, 2012

REFERENCES

1. Kaiser K.L.E.QSAR Comb. S¢i22,2003 185-190.

2. Vangronsveld J. and Clijsters H., Toxic effeofsmetals, in: Farago
M.E. (Ed.), Plants and the Chemical Elements Bintkgy Uptake,
Tolerance and Toxicity. VCH, Weinheim (Germary994 149 -178.

3. Walker J.D., and Hickey J.P.,. QSARs for metdiact or fiction? in:
Centeno J. A, Colleery P., Vernet G., FinkelmaBRGibb H., Etienne J.
C. (Eds.), Metal lons in Biology and Medicine. Johibbey Eurotext
Limited, Montrouge Franc€00Q 401 -405.

4. Hansch C. and Fujita T,American Chem Sp86,1964 1616- 1626.
5. Pavan M. and Worth A.RQSAR Comb. S¢R7,2008 32-40.

6. Lazea M., Putz M.V. and Chiriac AAnnals of West University of
Timisoara, Series of Chemistrg8(2),2009 49-56.

7. Putz M.V., Putz A.M., Lazea M., lenciu L. andi@t A., Int. J. Mol.
Sci, 10,2009 1193-1214.

8. Putz, M.V, Putz A.M., Lazea M. and Chiriac dournal of Theoretical
and Computational Chemistr§(6),2009 1235-251.

49

9. Nieboer E. and Richardson D.H.SEnviron. Pollut. Ser. B.1, 1980
3-26.

10. Pavan M., Netzeva T. and Worth, AQSAR Comb. S¢i27,2008
21-31.

11. Tsakovska I., Lessigiarska I., Netzeva T. andrtiV A.P., QSAR
Comb. Scj 27,2008 41-48.

12. Cronin M.T.D. and Worth A.PQSAR Comb. S¢i27,2008 91-100.
13. Baes C.F. and Mesmer R.E., The Hydrolysis dfo@a. John Wiley &
Sons, New York, NY, USA1976

14. Brown D.S. and Allison J.D., MINTEQAL, an edjilum metal
speciation model: User's manual. EPA/600/23-87/012).S.
Environmental Protection Agency, Athens, GAR87.

15. Alired A.L.,J. Inorg. Nucl. Chem17,1961, 215-221.

16. McCloskey J.T., Newman,M.C. and Clark S.Bnviron. Toxicol.
Chem, 15,1996 1730-1737.

Received: 26 April 2012
Accepted: 15 June 2012



